Overview
该论文发表于ACM2017, 对当前基于深度学习的推荐系统方法做了总结和分类,并给出自己的看法。论文见: Deep Learning based Recommender System: A Survey and New Perspectives
产生推荐列表的数据来源一般有如下几种: - user preferences - item features - user-item past interactions - some other features (temporal, spatial)
推荐模型主要分为三个大类: - collaborative filtering - content-based recommender system - hybrid recommender system
根据完成的任务可以分为 - rating - ranking - classification
Models
Traditional Models
- matrix factorization (MF)
- factorization machines (FM)
- BPR
- Collaborative Metric Learning (CML)
- funkSVD
Deep Models:

其中autoencodes包含如下几种: - denoising autoencoder - marginalized denoising autoencoder - sparse autoencoder - contractive autoencoder - variational autoencoder (VAE)
- MLP
- Nerual Network Matrix Factorization (NNMF)
- Nerual Collaborative Filtering (NCF)
- Deep Factorization Machine (DeepFM)
- Wide & deep Model
- Deep Structured Semantic Model (DSSM)
- Deep Semantic Similarity based Personalized Recommendation (DSPR)
- Multi-View Deep Neural Network ( MV-DNN)
- Autoencoder (AE)
- AutoRec
- CNF
- Collaborative Denoising Auto-Encoder (CDAE)
- Stacked denoising autoencoder (SDAE)
- Collaborative Deep Learning (CDL)
- Relational stacked denoising autoencoders (RSDAE)
- Collaborative variational autoencoder (CVAE)
- Collaborative Deep Ranking (CDR)
- AutoSVD++
- HDCR
- CNN
- Point-of-Interest (POI) recommendation
- VPOI
- VBPR
- DeepCoNN
- ConvMF
- ConvNCF
- RNN
- Session-based Recommendation without User identifier
- GRU4Rec
- Sequential Recommendation with User Identifier
- Recurrent Recommender Network (RRN)
- Session-based Recommendation without User identifier
- RBM
- RMB-CF
- Neural Autoregressive Distribution Estimation (NADE)
- CF-NADE
- Adversarial Networks (AN)
- IRGAN
- Attentional Models (AM)
- Deep Reinforcement Learning (DRL)
- DEERS
- DeepPage
- DRN
- Hybrid Models
- CNN + AE
- Collaborative Knowledge Based Embedding (CKE)
- CNN + RNN
- RNN + AE
- CRAE
- RNN + DRL
- CNN + AE
Future research directions
- Join representation learning user and item content information
- explainable recommendation with deep learning
- going deeper for recommendation
- machine reasoning for recommendation
- cross domain recommendation with dnn
- deep multi-task learning
- scalability of dnn
- better, more unified and harder evaluation
Top Conference
论文中提到Recommender Systems方向的定会大致有以下这些: - NIPS - ICML - ICLR - KDD - WWW - SIGIR - WSDM - RecSys